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Introduction
Pressure is a very important quantity to the dynamics of the oceans, and fluids in gen-
eral. Pressure gradients give rise to net accelerations that cause water to move, often in
surprising ways. There was some introduction to this qualitatively in the estuaries dis-
cussion. Here we solidify those concepts quantitatively because we need to understand
pressure gradients to make progress on understanding how the ocean moves.

To motivate ourselves, recall the demo of sloshing water in a tank (figure 1). The
surface interface is tilted such that area A is elevated, and area B is depressed. Our
intuition might say that the water needs to run downhill, and we may expect a flow,
confined to the water surface, of water from area A to area B. Under this hypothe-
sis, what do we expect the dye streak to do? What does the dye stream actually do
(approximately)?
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Figure 1: A tank with the water surface tilted from equilibrium. The surface wants to
flatten, so water must be moved from area A to area B. What is the action of a dye
streak through the water column?

To understand what is happening, we must understand pressure in the fluid. Pres-
sure is simply the force per unit area that a parcel of fluid exerts on its neighbours. This
is a bit hard to conceptualize, but consider a ballon filled with air. The air inside the
balloon is pushing out against the ballon with a certain force per area. This happens
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because the molecules of air are moving in random motion due to their heat, and some
of that momentum is exerted against the balloon’s surface.
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Figure 2: How to calculate the pressure for a one-layer fluid.

What is somewhat harder to conceptualize, is that the pressure forces are present
within the balloon as well. If we consider an arbitrary volume inside the balloon, the
molecules inside that volume hit molecules outside the volume, and extert a pressure
force on them as well. In math terms, we say that the force F exerted across any
arbitrary area inside or on the edge of the fluid is F = PA.

Hydrostatic Pressure
“Dynamic” pressure happens for fast flows, like those over an airplane wing. Fortu-
nately, in the ocean things are usually slow enough that we can ignore the “dynamic”
part, and focus on the “hydrostatic” part.

Hydrostatic pressure is relatively simple to understand. Consider a bucket of wa-
ter, and think about the forces on a little “cube” of water inside the bucket. Sup-
pose our cube is 0.1 m deep in the bucket. There is a column of water above our
little cube that is not moving. The force of gravity wants to pull this column of wa-
ter down. The force is simply Fw = mg, where g = 9.8ms−2, the mass m = ρV ,
where ρ = 1000 kgm−3 is the density of water, and V is the volume of the col-
umn of water V = (0.1 m)dxdy. So, the water column is pushing down with force
F = dxdy(0.1m)(9.8 ms−2)(1000 kgm−3)≈ dxdy 1000 Nm−2.

What provides the force that holds this water up, against gravity? Its the water, just
below, in our small cube. This water provides the pressure force from directly below
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Figure 3: How to calculate the pressure for a one-layer fluid.

Fp = Pdxdy. If the water is not moving, Fp = −Fw, so that the sum of forces in the
vertical is zero. We can use this deduction to calculate the pressure at a depth h:

P(z =−h) = ρgh. (1)

For this example, ρ = 1000 kgm−3, g = 9.8 m2s−1, h = 0.1m, so P = 980 Nm−2.
Essentially the pressure is simply the weight of the water above, per unit area.
Note that the squishing from the top, also causes squishing to the sides, so the

water pressurized by the water above also exerts forces on the water in the horizontal
direction.
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Figure 4: How to calculate the pressure for a two-layer fluid.
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If the density of the water varies due to changes in temperature or salinity, then
the weight needs to be calculated by summing up the different densities. i.e. imagine
that the first meter, the density is 1000 kgm−3, and for the second meter, the density is
1010 kgm−3. Then the pressure at 2 m is:

P(z) =
∫

ρ(z)gdz (2)

≈
n

∑
j=1

ρ j g∆z j (3)

= (1000∗1∗9.8+1010∗1∗9.8) Nm−2 (4)
= 19698 Nm−2 (5)

Adding more layers to the water column, or making the layers different thicknesses is
just handled by adding more terms to the sum. Often it is useful to use a computer for
this kind of calculation!

Pressure Gradients: Surface
We wouldn’t care too much about pressure if it did not cause water to move. Consider
a sloshing bathtub, mid-slosh (figure 5). In this situation it is intuitively obvious that
the water wants to move from left to right, but what force is pushing it? First, where
is pressure the highest at point 1 or point 2? These points are both a depth h below the
resting depth of the top of the fluid. Above point 1, there is slightly more water due to
the “slosh”, whereas above point 2 there is slightly less. Therefore the pressure at point
1 is greater than at point 2. (P1(z = −h) = ρg(h+η1) and P2(z = −h) = ρg(h+η2),
where η is the height of the water above its resting depth. η1 > 0, and η2 < 0, therefore
P1 > P2).

It should also be obvious that everywhere in the fluid the pressure is decreasing to
the right at a given depth i.e. dP/dx < 0. In fact the horizontal pressure gradient can
be calculated from

P(z =−h) = ρg(h+η) (6)

and taking the derivative to get the gradient:

dP
dx

(z =−h) = ρg
dη

dx
. (7)

or, the change in the pressure is caused by the slope of the sea surface.
How does this move the water? Lets consider the force diagram on a block of water

inside the tub (figure 6) If the pressure is greater on the left hand side, then the force
into the block from the left is larger than the force into the block on the right, and
the net force F1 −F2 > 0, and the block tends to move to the right. Note that in this
case dP/dx < 0. In the absence of other forces, the acceleration on the block in the
horizontal direction is therefore given by

du
dt

=−1
ρ

dP
dx

(8)
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Figure 5: Pressure in a sloshing tub.

A question for the reader is to check that this gives the correct sign of the acceleration
compared to their intuition.
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Figure 6: Lateral forces across a small hypothetical block.

For the example of the bathtub given above, it should also hopefully be clear that
the pressure gradient, and thus the acceleration, does not depend on the depth below
the surface. The pressure gradient, dP/dx, only depends on the sea surface tilt, not on
z.

Pressure Gradients: Internal
If the fluid has density layers, then the pressure field can be more complicated, and
the motions harder to predict. For the simplest case, consider a two-layer fluid, with
a flat upper surface, and a tilted interface between two layers with densities ρ1 and ρ2
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(figure 7) with ρ2 > ρ1. Again, the pressure is lower on the right than left, so water in
the deeper layer has a pressure gradient force from high pressure to low pressure, i.e.
to the right.

Mathematically, PA(z = −h) = g(ρ1h1(xA)+ρ2(h− h1(xA))), and PB(z = −h) =
g(ρ1h1(xB)+ρ2(h−h1(xB))). We can estimate the pressure gradient as

dP
dx

≈ PB −PA

xB − xA
= g(ρ1 −ρ2)

h1(xB)−h2(xA)

xB − xA
=−g(ρ2 −ρ1)

dh
dx

(9)

So again, the pressure gradient depends on the slope of the interface, except this time,
the interface is between the two densities.
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Figure 7: How to calculate the pressure for a two-layer fluid.

Of course, the cases can be combined (figure 8). There can be a surface tilt, and
many interface tilts. While care needs to be taken to keep track of all the layer thick-
nesses, and the algebra looks messy on the page, the fundamental idea is to simply
calculate the weight of the water about the point of interest, including the effect of the
local sea-surface elevation.
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Figure 8: Many layer-fluid.
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