Assign 2, Q1

a)

$$
\begin{aligned}
\Delta P & =\lg h_{A}-\rho g h_{B} \\
& =\rho g 0.1 \mathrm{~m} \\
& =g 80 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

b) flaw from loft to right
c)
c) PA does not care ament the
 bend.

- why? At any depth pressure is the same so

The idea is to get the torque around the centre of rotation; so we need the distance of the center of mass and center of buoyancy from the center of rotation:

$$
r_{\text {com }}=\left(0, \frac{L}{2}-L f_{0}\right)=\left(0, L\left(\frac{1}{2}-\frac{f}{\rho_{0}}\right)\right)
$$

So the torque C.O.m \rightarrow just $\sim \times \underset{\sim}{F}$

$$
I_{\text {com }}=x F_{y}-y F_{x}=\rho g L^{2} d\left(\frac{1}{2}-\frac{\rho}{\rho_{0}}\right) \delta \theta
$$

Now, te center of buoyancy is haler because it noes - Note that

$$
\begin{aligned}
& A_{0} r_{C O B}=A_{0}\left(0, \frac{L \rho}{2 \rho}\right)+\left(-\frac{2}{3} \frac{d}{2}, \frac{\delta \theta}{3} \frac{d}{2}\right) A_{T} \\
&-\left(\frac{2}{3} \frac{d}{2}, \frac{-\delta \theta}{3} \frac{d}{2}\right) A_{T} \\
& A_{0}=d \frac{L}{2} \frac{\rho_{0}}{} ; A_{T}=\frac{1}{2} \frac{d^{2}}{4} \delta \theta ; A_{T} / A_{0}=\frac{d}{4} \frac{\rho_{0}}{\rho} \delta \theta
\end{aligned}
$$

$$
\begin{aligned}
& r_{\text {cob }}=\left(-\frac{1}{12} \frac{d^{2} \delta \theta}{w},-\frac{w}{2}\right) \quad d \text { copping } \\
& \delta \theta^{2}
\end{aligned} \text { forms }
$$

if stable!

