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shallow water (for example, Fy =1 for ship (or boat) speed U =
28 knots in water of 20 m depth). For the case of forcing by topo-
graphy, where U is the current speed, Froude numbers of order unity
are common in shallow, fast-moving streams, and the resulting non-
linear effects are discussed in the following sections. But for most of
the time, for most rivers, the Froude numbers are small. In the
stratified analogues to be discussed in subsequent chapters, and which
are our primary concern, Froude numbers of all values are possible.

I am not aware of any detailed observational tests of the linear
theory for two-dimensional ship wakes, but the latter gives a good
qualitative description of the disturbances produced by ducks, boats
etc. (Examples are shown in Stoker 1957 and Lighthill 1978.) For flow
over topography, there is no reason to question the validity of linear
theory for sufficiently small 4, but this range of validity is dependent
on Fo.

2.3 One-dimensional non-linear hydrostatic flow

We now return to one-dimensional flow and investigate non-linear
effects. These phenomena are most readily appreciated in the hydro-
static system with its long horizontal length-scales, where dispersive
effects are not present. From (2.1.6, 2.1.8) we obtain for this system,
with d = dy + 1 — h,

Ug + ully = — gy, (2.3.1)
d; + (du), =0, (2.3.2)

or alternatively
N + [(do + mulx = (uh)y (2.3.3)

and we again take the initial conditions (2.2.3), namely u = U, n = h,
n, =0, at +=0. This is a classic system of hyperbolic diffential
equations with a forcing term, which may be expressed in the charact-
eristic form

—(u +2Vgd) = —g— (2.3.4)
on the respective characterlstlc curves, Wthh are given by
j—x —u+\gd (2.3.5)
t

(For a discussion of this type of mathematical system, see Whitham
1974; an interesting geometrical approach has been described by Broad
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et al. 1993). For small times, the solution of this initial-value problem
is essentially the same as for the linear system, and it is given by (2.2.5)
and displayed in Figure 2.1. The flow is still governed by the value of
the Froude number for the undisturbed flow Fy= U/V gd, , but as
time increases the characteristics over the obstacle do not remain
straight but become curved, depending on the values of the flow
variables u and d. Representative examples for Fy<1 and Fo> 1,
showing the characteristics of the upstream-propagating waves only,
are presented in Figure 2.6. In most situations of interest, the down-
stream-propagating wave (on the characteristics dx/dt =u + \/EJ) is
little affected by non-linearities, and travels quickly downstream away
from the vicinity of the obstacle. Whilst necessary to satisfy the initial
conditions, these waves are unimportant otherwise and are not rele-
vant to the following discussion. However, on the upstream side of the
obstacle, the equations for the variables on this same family of
characteristics ((2.3.4, 2.3.5) with the plus sign) may be integrated to

yield
u+2Vgd =U+2Vgdo, (2.3.6)

since the initial conditions are the same for each member of this family
of characteristics on the upstream side. Substituting (2.3.6) into (2.3.4,
2.3.5) then yields, for the other set of characteristics (for waves

propagating against the flow),
dy _dd onﬂd’i _U+2Vedy -3Ved, (237)
t

on the upstream side of the obstacle. In this region, d is constant on
each characteristic which is therefore straight, but the slopes are
different for different characteristics. The result is that, for Fy > 1, the
characteristics converge and intersect, as shown in Figure 2.6a, because
a disturbance of larger elevation travels faster. For Fy> 1 the effect
may be large enough to cause the upstream waves over the obstacle to
change direction, as shown in Figure 2.6b. The same processes occur,
mutatis mutandis, on the downstream side.

This phenomenon of wave speed being dependent on wave am-
plitude is termed amplitude dispersion, and is illustrated in a simpler
form in Figure 2.7. A wave of elevation, here simplified to a mono-
tonic increase in surface level moving to the left into undisturbed fluid,
is also governed by (2.3.6) and (2.3.7), which show that the interface
steepens with time as shown in Figure 2.7a. On the other hand, a

decrease in surface level moving in the same direction and leaving
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Fig. 2.6. Representative characteristics for the upstream-propagating disturb-
ances for non-linear hydrostatic flow forced by an obstacle impulsively set into
motion, when upstream jumps form (cf. Figure 2.1). The obstacle is centred at
x =0, and decreases in height to near-zero at x = + 3. The jumps are denoted

by heavy lines. (a) Fp <1, (b) Fp> 1. (Adapted from Grimshaw & Smyth
1986.)

shallower fluid at rest on the right becomes more spread out, or
“rarefied”, with time, as shown in Figure 2.7b. The upstream wave of
elevation produced by the starting motion of the obstacle therefore
steepens, to the point where the interface becomes vertical, and in
principle overturns. Within the framework of the present model, this
results in a “hydraulic jump” which may be modelled as a discontinu-
ity, and it is not governed by the above equations per se. Hence we
must consider its behaviour as an independent entity.

2.3.1 Hydraulic jumps

We consider a simple model of hydraulic jumps based on the principles
of mass and momentum conservation, which will be adequate for our
present purposes. More detailed properties of jumps will be discussed
later in this chapter. We assume that a hydraulic jump may be
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(b)
Fig. 2.7. The development of a moving surge according to the hydraulic model.
(a) A monotonic increase in depth where the deeper fluid is moving to the left
at ¢ = 0 into fluid at rest, steepens at subsequent times to form a discontinuity
or bore. Arrow length denotes speed of fluid, and dots denote fluid at rest. (b)

The reverse situation where the deeper fluid moves away from the depth
change, leaving fluid at rest on the right. At later times this disturbance is more

spread out, or “rarefied”.

regarded as a locally steady and compact region with its own internal
dynamics, which may be modelled as a discontinuity between two
uniform streams, and that it is produced as a result of wave steepening
as just described. We then require equations relating conditions on the
upstream and downstream sides of the jump, which must be considered
from first principles. At the most fundamental level, we must have
conservation of mass and momentum in the region of fluid containing
the jump. We take coordinates fixed relative to the jump, and in this
frame of reference denote the fluid velocity and depth on the upstream
side by u, and d,, and on the downstream side by u4 and dy4, as shown
in Figure 2.8. Conservation of mass into and out of the jump then gives

uudu = uddd = Q, (238)

where Q is the volume flux relative to the jump. Conservation of .
momentum applied to a vertical column of fluid implies that the
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T Y

Fig. 2.8. Notation in the frame of a steady hydraulic jump (see text).

vertically integrated form of (2.3.1) applies across the jump, and
integrating (2.3.1) vertically and then horizontally gives

dyul + 3gd% = daud + 3gds. (2.3.9)
These two equations completely specify the properties of the jump at
this level of approximation, and enable relevant properties to be
calculated. One of these is the rate of energy dissipation within the
jump. The energy density of a column of fluid is given by
E = Ypodu® + 3pogd?, (2.3.10)
and from (2.3.1, 2.3.2), over level ground the rate of change of energy
is given by
BE —ipo(%mﬂ + gudZ) = — 2 oR, (23.11)
ot ox Ax
where poOR = podu(u®/2 + gd) may be identified as the flux of
energy. Note that the flux of energy is not simply given by uE, because
each fluid column is not independent of the others, and account must
be taken of work done by the pressure force that acts between them
(see (1.3.3-6)). The rate of energy dissipation within the jump is then
given by the differences between the energy fluxes into and out of the
jump, namely
dE; pogQ (da — dy)’

a PoQ(Ry — Ry) 4 dyd, ’ (2.3.12)
where Ej denotes the energy of the fluid in a region containing the
jump and moving with it. The mechanisms for this energy dissipation
depend on the detailed internal dynamics of the jump, and (2.3.12) is
effectively a requirement imposed by the external conditions. Note
that for the energy dissipation to be positive we must have dq > d,.

For a jump advancing into water that is at rest, the speed of the
jump in this frame, cy, is given by u, = ¢y, and eliminating uy4 from
(2.3.8,2.3.9) yields

2= §d—d(1 + id-), (2.3.13)
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a speed which is faster than that of linear waves onl fluid of depth dg4
(where wave speed ¢ = \ gdq), because the fluid following the jump is
moving in the same direction in this reference frame.

2.3.2 Flow solutions with topography

The steady-state flow solutions may be specified by the two dimension-
less parameters Fo and Hy, = hn/do, where h,, is the maximum height
of the topography. If hn is sufficiently small the solution is approxi-
mately linear, as described by (2.2.5). Here, when Fy < 1 the upstream
disturbance escapes from the region of the obstacle, and for Fo> 1,
the corresponding wave is advected away downstream. In both cases,
we are left with a steady disturbance over the obstacle, where the
upstream conditions are unchanged from the initial ones of u=U,
d = do. The steady-state forms of (2.3.1, 2.3.2) may be expressed as

i(%uZ + gd + gh) =0, _g_(ud) =0, (2.3.14)
dx dx

which give
ud = Q = Udy, (2.3.15)

and

2
12 + gd + gh= 2+ gd + gh =3U” + gdo, (2.3.16)
2d

which gives d(x) as a function of A(x). This equation may be expressed

as

2

%( F"do) L4 h 1R, (2.3.17)
d d 0

and the solutions are qualitatively similar to those obtained from linear

theory (2.2.5) and shown in Figure 2.1. The range of applicability of

(2.3.16, 2.3.17) is limited, though, and the limit is seen from (2.3.14)

which gives
2
(”— - 1)91 = dn (2.3.18)
gd dx dx

This implies that at the crest of a single-humped obstacle where dh/dx
vanishes, either dd/dx also vanishes or the local Froude number F,
defined by F?= u?/gd, is unity. Also, when F=1 we must have
dh/dx = 0. Now in these steady solutions we have F = F, upstream,
and for Fy <1, F increases over the obstacle as d decreases and u
increases with increasing h. But from (2.3.18), F can only equal unity
at the crest of the obstacle where h has its maximum value, Ay. Hence
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F cannot exceed unity and % therefore has a maximum value. In these
solutions the flow is subcritical everywhere. Similarly for Fy>1, F
decreases over the obstacle and the solutions are again limited by
F =1 at the crest, so that here the flow is supercritical everywhere.
This maximum obstacle height specified by F =1 is a function of the
initial Froude number F, and is shown in Figures 2.10-12 (see pp.
41-5) as the curve BAE. From the above equations this curve is
readily shown to be given by

Hn=1-3FP +1Fr2 (2.3.19)

This is the boundary of the regions of Fy — H, space containing
solutions of wholly sub- or supercritical flows, with steady upstream
flow states unaffected by the obstacle. When H,, exceeds these values
the flow is more complicated and, as the above theoretical discussion
suggests and laboratory experiments have shown, an upstream hy-
draulic jump forms on the upstream side, and must be incorporated
into the flow solution.

For flow over depressions, where h <0, if F; <1 the steady solu-
tions with subcritical flow everywhere apply regardless of the depth of
the hole, and the same applies to the solutions with supercritical flow if
Fy > 1. These flow states stem from two different solutions to the cubic
equation (2.3.17) for d/d,, and if F, is varied through unity for fixed
Hp, (<0), the flow state will jump from one to the other. If F, = 1, the
steady solution is indeterminate, and may take either form. This
suggests that this flow is unstable and unsteady, at least for small
obstacles, and this property is discussed further in section 2.6. Note
that flow over depressions of any size may be either sub- or super-
critical. Waterfalls are a limiting case. Flow in a waterfall must be
supercritical, and hence the flow approaching it must also be super-
critical if the depth decreases monotonically in the direction of flow.
Subcritical flow may exist upstream if it is separated from this super-
critical downstream state by a sill or obstacle, where a transition from
sub- to supercritical flow occurs.

The preceding equations may be used to incorporate an upstream
jump into the characteristic solutions specified by (2.3.7). However, a
much simpler approach to locally steady flows over topography is to
look for solutions that are steady in the vicinity of the obstacle, and
assume that an upstream hydraulic jump (moving away from the
region) exists ab initio. In fact, the region downstream of such a jump
must be subcritical in the frame of the obstacle, so that waves may
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propagate from the obstacle to the jump and vice versa. As discussed
above, a jump imposes its own conditions on the flow. In practice,
therefore, when an upstream jump forms, the information is trans-
mitted back to the obstacle and affects the flow there; the consequent
change is then transmitted back to the jump, and so on, with decreas-
ing magnitude of effects. An equilibration between the two is therefore
set up, and this is manifested in the steady-state solutions. In practice,
the jump usually forms over, or very close to, the obstacle anyway.
From (2.3.18), where hy, is sufficiently large for (2.3.17) not to be
applicable, we must have F =1 at h = hy,. We therefore consider a
model of the flow as shown in Figure 2.9a, where axes are taken in the
frame of the topography, and for the present we consider only the
upstream side. The upstream jump is moving to the left at a speed cj,
whereas the other parts of the flow are steady. We therefore have five

(b)

DG DA S AN AN S SRS RS AR S
X

—

Fig. 2.9. Definition sketches for notation for flow over a long obstacle. (a)
Upstream flow with a hydraulic jump; (b) downstream flow with a moving
hydraulic jump and rarefaction wave; (c) downstream flow with a stationary
hydraulic jump and rarefaction wave.
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unknown variables (c|, u,, d,, 4. and d.), to be determined by the five
equations

(U + c)dy = (1, + ¢))d,, (2.3.20)

Updy = ucd,, (2.3.21)

(U + ¢ = g—da(l + ia-), (2.3.22)
) dy

Uz + gdy = Jul + g(de + hy), (2.3.23)

u? = gd,. (2.3.24)

Here the first two equations come from mass conservation, the third
from the jump speed expression (2.3.13), the fourth from the Bernoulli
equation (2.3.14, 2.3.15), and the fifth from the critical condition at
h = hy. The solution of these equations yields results as shown in
Figure 2.10 for the upstream jump speed and its elevation, rendered
dimensionless by

(2.3.25)

B
0 0.5 1.0 1.5
H,

Fig. 2.10. Values for upstream jump speed C; = c/V gdo and jump amplitude
(D, = d,/dy) as functions of Fy and H,,, from the hydraulic model. The shaded
regions denote the parameter ranges covered in Long’s (1970) experiments.
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FR+12+1
@RI 1 3R (2.3.26)
16F3 4 2

Near Fp=1, Hn, =0, the perturbation to the undisturbed flow in the
solutions to (2.3.20-24) grows as H %,(2, rather than Hpy. As Hp
increases, the value of u,d, in these solutions progressively decreases,
and reaches zero at the curve BC, which is given by

1+ H, \?
o= (Hy —1 /9—) . 2327
0 ( m )( 2Hm ( )

To the right of this curve, there is no flow over the obstacle, as the
latter is high enough to block the flow completely. On this boundary
D, = Hp, and to the right of it D, < H ,; further increases in H, with
F, constant cannot change the upstream flow properties. The flow
states pertaining to these various regions of the F, — H,, diagram are
shown in Figure 2.11. When F, = 4.47, curve BC intersects AE at a
point (not shown) denoted by K, and BC continues and asymptotes to
a straight line that is parallel to AG. In the region CKE, in which
Fy>4.47, Hy>6.90, the steady flow is either supercritical every-

where, or totally blocked.

= A

= Partially blocked
or supercritical

Partially blocked, no lee jump

Partially blocked with lee jump

t
|

Subcritical flow

Fig. 2.11. Flow regimes on the Fo— Hm diagram for hydrostatic single-layer flow
over an obstacle.



seneous layer with a free surface

»s of C;, D, are shown in terms of the
; parameters of the system, Fy and Hy,.
»mparisons with laboratory experiments
in Figure 2.10, with satisfactory agree-
.10 the curious result that solutions to
) the right of the curve BAE, but extend
1. AG is determined by the criterion
wve the equation

DA 1 3pas (2.3.26)
6F% 4

turbation to the undisturbed flow in the
vs as H},{z, rather than Hpy. As Hy
these solutions progressively decreases,
3C, which is given by

2
- 1)(1—+H—m)1/ . (23.27)
2H,,
are is no flow over the obstacle, as the
the flow completely. On this boundary
t D, < Hp; further increases in Hy, with
he upstream flow properties. The flow
ous regions of the Fy — Hy, diagram are
F, = 4.47, curve BC intersects AE at a
K, and BC continues and asymptotes to
| to AG. In the region CKE, in which
eady flow is either supercritical every-

:/_\ - j‘\/
jally blocked  — 7777, .

supercritical

G E Partially blocked, no lee jump

Partially blocked with lee jump

D ——r,
E— T
B C— |
Y ’ :
0.5 1.0 Complete blocking
H,, =hy/d,

- H,, diagram for hydrostatic single-layer flow

2.3 One-dimensional non-linear hydrostatic flow 43

Within region EAG, the flow may be either supercritical, as in the
region to the left of AG, or controlled by a critical condition at the
crest with an upstream jump, as in the region to the right of AE.
Although the governing equations have been known for a hundred
years or more, the presence of these two different flow states in region
EAG is a relatively recent discovery. [Curve BAG was described by
Long (1954, 1970), curve BAE by Houghton & Kasahara (1968), and
region EAG by Baines & Davies (1980).] The presence of these two
states implies that the state obtained in practice depends on the initial
conditions. It also implies that there is hysteresis in the system. If, for
example, one starts with a steady supercritical state in EAG and then
slowly decreases Fy so that the flow evolves quasistatically through a
succession of steady states, on reaching AE the flow suddenly changes
from supercritical flow to the critically controlled state with the up-
stream jump. If one then reverses the process and increases Fj, this
new state persists until curve AG is reached, where the flow makes a
sudden transition back to the supercritical state. Similar transitions
occur if Fy is held constant and H, is increased and decreased. This
hysteresis has been verified numerically by Pratt (1983), and it may be
readily demonstrated in a hydraulic laboratory.

When the flow is critically controlled at the obstacle crest, the
downstream flow may have one of the two forms shown in Figure 2.9b
and ¢ (Houghton & Kasahara 1968). Flow on the lee side is super-
critical (i.e. F>1) and is followed by a hydraulic jump that may be
swept downstream as in Figure 2.9b, or situated over the topography
as in Figure 2.9c. However, these structures alone do not permit the
downstream flow to be equated to the initial flow state. This connec-
tion may be made by adding a time-dependent downstream propagat-
ing wave. This is a rarefaction wave propagating into fluid at rest on
the one family of characteristics only, and as for (2.3.6), (2.3.4, 2.3.5)

give
u.—2Vgd. = U -2V gd,. (2.3.28)

For the configuration and notation of Figure 2.9b, we again have five
undetermined variables, and the five equations

ucd = updy, (2.3.29)

ul + g(d + hp) = 3u + gdy, (2.3.30)
gd. ( dc)

u, + ¢;)? = =1+ ==, 2.3.31

(up + ¢r) 2 2 ( )

(ub + Cr)db = (ue + Cr)dea (2332)
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and (2.3.28), which enable uy, dy, Ue, d. and c, to be determined.
Here (2.3.29, 2.3.32) come from mass conservation, (2.3.30) from the
Bernoulli equation over the obstacle, and (2.3.31) from the jump speed
relation (2.3.13). These equations apply above the dashed line AD in
Figure 2.11, where ¢; = 0 on this line. Below AD the configuration of
Figure 2.9c is applicable, with a stationary jump over the lee side of the
obstacle. Here we have seven unknowns: u_, d_, and u,, d,, which
are the flow variables immediately upstream and downstream of the
jump respectively, Ue, de, and hj, the height of the topography at the
location of the jump. The equations are

ud, = u_d_ = urdy = uede, (2.3.33)
d
2 = B4 (1 + —i) (2.3.34)
2 d_
12 + g(de + hp) = 3u° + g(d— + hy), (2.3.35)
W2 + g(dy + hy) = jue + gde, (2.3.36)

and (2.3.28), from which the details of the flow may be found.
Respectively these equations come from conservation of mass, the
condition for a stationary jump (c, = 0), and the Bernoulli equations
over the obstacle. Curves showing the values of c; (above AD) and hy

(below AD) are shown in Figure 2.12.
In the blocked flow region to the right of curve BC in Figure 2.11,

‘ the downstream jump disappears and the downstream flow is com-
pletely governed by the condition (2.3.28) with u, = 0. This gives
dc F 0 2
—=1-—], (2.3.37)
do 2
so that d. decreases from do/4 to zero as Fj increases from 1 to 2, and
must vanish for Fy =2 where the fluid “dries out” on the lee side of

the obstacle.
In the region enclosed by EADC (or GADC) of Figure 2.11, the

drag force on the obstacle is

- : dy — dp)®
‘o Fp = J'pih_ dx = ﬁ(—_")_, (2.3.38)
(TaR R dx 2 d,+d,
where p = pgd is the pressure on the topographic surface.

2.3.3 Flow through variable cross-sections and lateral contractions

Single-layer flow through a channel whose cross-section varies on
length-scales that are long compared with the channel width and depth,




