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1 Introduction

Figure 1: Shear instability in a fluid; the flow in the upper half is moving
to the right faster than the fluid in the lower half. The three panels are
distance downstream.

We have seen in the lab demos that fluid flow is very susceptible to
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2 RAYLEIGH SHEAR INSTABILITY

becoming unstable and breaking down into turbulence. An example is shown
in figure 2 on the following page where the flow in the upper layer is moving
faster than flow in the lower layer and this leads to a ”shear instability”. A
few things to note:

• There is clearly a preferred horizontal scale to this instability. The
billows that grow are one size until they self-interact and become tur-
bulent.

• This horizontal scale must be present in the upstream conditions, but
it need not be large.

• The instability takes time to grow.

This leads to a few questions we commonly ask ourselves about a flow

1. Is a flow unstable?

2. If a flow is unstable can we say what scale has the fastest growth rate?

3. How fast is that growth rate?

2 Rayleigh Shear Instability

As a simple situation that often leads to instability lets consider a homoge-
neous steady background flow u = U(y). The idea of an instability is that
there are always small imperfections to this flow. Physically, its easiest to
think of these as small displacements of the streamlines around the mean
and then consider what happens if there are small perturbations to the flow.
If the flow is stable, then all perturbations will be damped, whereas if it is
unstable some perturbations will grow.

2.1 Linear perturbation analysis

All of these methods decompose the flow into a background component of
the flow and a ’perturbation’, and then assume that the perturbation is
small so that only linear terms in the perturbation are retained. i.e. if
u = U(y) + u′(x, y, y) then terms that are quadratic or higher in u′ are
assumed small. So, similarly v = v′, and p = p′ because neither of these two
variables have a background component.

So for the flow above the x-, and y-momentum equations, and continuity
equations become:
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2.1 Linear perturbation analysis 2 RAYLEIGH SHEAR INSTABILITY

Figure 2: Schematic of shear instability. Background flow is steady and has
a dependence in y. The idea of a flow instability is to perturb the flow and
see what scales in the flow grow.
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To see how this flow behaves in the presence of perturbations, we assume
the flow is a periodic travelling wave in the x-direction and has a y-direction
structure (to be determined):

u′ = û(y) eik(x−ct)

v′ = v̂(y) eik(x−ct)

p′ = p̂(y) eik(x−ct)

This gives three coupled PDEs for the vertical structure of the response
that depends on k and c:

−ikc û+ ikU û+ U ′ v̂ = −ik p̂
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−ikc v̂ + ikU v̂ = −ik
∂p̂

∂y

ik û+
∂v̂

∂y
= 0

where here we have defined U ′ ≡ ∂U
∂y .

This is three coupled equations in three unknowns, so as usual we com-
bine, choosing to do so for v̂(y), and after some algebra get

v̂′′ + v̂

!
U ′′

c− U
− k2

"
= 0 (1)

How does this help us? Equation (1) cannot be solved analytically, but as
we will see below some useful criteria for stability can be derived analytically
using it. However, first what is the character of the numerical solutions?
We note that k is always real (its the wavelength of the disturbance we are
interested in), but that c may be imaginary in general. If it is imaginary,
then we have growing solutions if I(c) < 0 (assuming k > 0) and the growth
rate will be given by kI(c).

Now all we need to do is solve for c and v̂(y) for a given U(y) and k.
Equation (1) is a classic eigenvalue problem, where c can have a number
of distinct values for a given background profile of U(y). When we solve
this numerically, the numerical solution ends up being a matrix eigenvalue
problem.

2.2 Numerical Solution

Numerically equation (1) is straightforward to set up using first differencing.
First we rewrite in an eigen-vector/eigen value form, where v̂(y) are the eigen
vectors and c are the eigenvalues:
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&
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We write it this way because that allows us to write the discretized form as
matrix equation of the form

Av = cBv (3)

where A and B are matrices, and v is an eigenvector we are solving for and
c is a generalized eigenvalue problem for which there are numerical solvers
in most linear algebra packages (i.e. scipy.linalg.eigh).

4



2.2 Numerical Solution 2 RAYLEIGH SHEAR INSTABILITY

Setting up the matrices A and B is straight forward based on our pre-
vious discretization attempts. If divide the y-domain into N grid points,
indexed from 0 to N − 1, then we end up with two tri-diagonal matrices:

Ai,i−1 = Ai,i+1 = Ui/∆y2

Ai,i =
'
−2/∆y2 − k2

(
Ui − (Ui+1 + Ui−1 − 2Ui)/∆y2

and for B:

Bi,i−1 = Bi,i+1 = 1/∆y2

Bi,i = −2/∆y2 − k2

These relationships are for interior points where i > 0 and i < N − 1. For
the first and last row we need to assume boundary conditions, which in this
case is the disturbance goes to zero at the boundaries: v̂−1 = v̂N = 0, and
assume that U has not gradient there: U−1 = U0 and UN = UN−1. If we do
that then we just plug those values into the above relations to get

A0,0 =
'
−2/∆y2 − k2

(
U0 − (U1 − U0)/∆y2

A0,1 = U0/∆y2

B0,0 = −2/∆y2 − k2

B0,1 = 1/∆y2

and similarly for i = N − 1.
This eigenvalue problem can then be solved for each value of k to be

explored, and the fastest growing unstable mode determined for each k.
An example of this calculation is shown for the profile in figure 3 on the
following page. There is a clear minimum in the growth time for this profile
at k = 2.3 × 10−4 radm−1 indicating that this wavelength will have the
fastest growing instability. The shape of the eigenvectors (figure 5 on page 8)
can also be determined if that is of interest.
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Figure 3: Background velocity profile for stability analysis.
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Figure 4: a) Fastest-growing eigenvalue and b) growth timescale as a func-
tion of wavenumber for the velocity in figure 3 on the previous page. The
fastest growing wavenumber is broadly around 25-km scale.
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Figure 5: Eigenvectors for discrete wavenumbers k. The eigenvectors with
solid colours are unstable, and the dashed ones are stable.
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2.3 Fully non-linear simulation

The same velocity profile can be used as the initial conditions of a prim-
itive equation numerical model. Here we set up a channel that has solid
boundaries in y and is periodic in x over a distance of 400 km (figure 6) and
use the same velocity profile as figure 3 on page 6. The flow is seeded with
very small imperfections that then grow or are suppressed. We can see the
growth starting in figure 6b.

Figure 6: Channel simulation with shear as in figure 3 on page 6, and some
added numerical noise after it has been allowed to evolve for 90 h. Upper
plot is velocity, and lower plot is a passive tracer with the same initial
distribution as the velocity

After the flow has evolved for longer (160h) than the fastest growth
scale, it is clear that a scale of about 25 km has been ”selected” in the flow
instability (figure 7 on the next page). The other scales are still present,
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but did not grow as fast as this scale and hence it dominates the figure. Its
worth noting that the billows in this simulation are all slightly different, and
that is the chaotic amplification of slightly different-phased disturbances.

Figure 7: As figure 6 on the previous page except after 160 h, when the
instabilites have grown to noticeable size.
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As the flow evolves for a longer period of time, these un-even vortices
start to self-interact, and pairs of vortices merge to create larger channel-
spanning vortices (figure 8). These eventually completely collapse into near-
homogeneous turbulence.

Figure 8: As figure 6 on page 9 except after 160 h, when the instabilites
have grown to noticeable size.
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The evolving character of the flow is well-visualized by looking at spectra
of the tracer variance in the along-stream direction (figure 9). Note that the
fastest-growing wavenumbers are near the wavenumber predicted by the
linear perturbation theory (k = 0.036 cpkm = 2.3× 10−4 rad/m).

Figure 9: Spectra of tracer variance in the along-flow direction. Spectra
with more variance are from later in the simulation. Note the broad peak
near the wavenumber of the fastest-growing mode (grey dashed line)

Note that there is a steep roll-off of the tracer spectrum to high wavenum-
bers. This is a rough approximation of the inertial and convective subranges
of turbulence, where I say they are rough because the numerics are such that
the Reynolds number of these flows is not very high.
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2.4 Stability of flows

We chose the flow in the examples above to be unstable. Consider a different
example (figure 10) and note that the growth rate for the unstable mode
is many thousands of hours. A primitive equation simulation of this flow
never develops instability because any disturbances that form are killed by
viscosity in the model before they have a chance to grow. Indeed the fact
that we found a finite timescale for the growth of this mode is just a nu-
merical artifact, and can be made arbitrarily long if we increase the vertical
resolution of the numerical discretization.

Figure 10: Unstable mode growth rate for profile in the inset. Note that it
is many thousands of hours, and hence effectively infinite.

It turns out that we can mathematically see which background flows
U(y) are stable or unstable, which is of course very useful, and often one of
the primary goals of stability analysis. Reconsider equation (1) on page 4
by multiplying by the complex conjugate of v̂, v∗ and integrate across the
y-domain:
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) L

0
v∗v̂′′ dy +

) L

0
v∗v̂

!
U ′′

c− U
− k2

"
dy = 0 (4)

Note that integrating by parts yields:
* L
0 v∗v̂′′ = v∗v′|L0 −

* L
0 |v′|2 dz so that

we can rewrite as
) '

|vy|2 + k2|v|2
(

dy +

)
U ′′

U − c
|v|2 dy = 0 (5)

The first term is always real. The second term is only imaginary due to
the presence of c in the denominator, so multiplying top and bottom by the
complex conjugate U − c∗, the imaginary part is

cI

)
U ′′|v|2
|U − c|2 dz = 0 (6)

So, if cI is not zero then the integral must be zero, but the only thing that
can change sign is U ′′ so we can reach the conclusion that the flow is stable
is U ′′ does not change sign, i.e. if the curvature of U(y) doesn’t change
somewhere in the domain.

Hence in the examples above, The first velocity profile (figure 3 on
page 6) can be unstable because U has negative curvature above y = 0
and positive below y = 0. Note that just because it can be unstable doesn’t
mean it will be, but the instability analysis proves that it is. Conversely,
the velocity profile used in figure 10 on the previous page only has negative
curvature, i.e. the sign of U ′′ does not change in the channel. Therefore that
flow cannot be unstable, and the numerical stability analysis and simulations
reflect this.

3 Stratified Shear (Kelvin-Helmholtz) Instability

A second type of shear instability is the shear between two immiscible layers
ρ1 and ρ2 with a background flow that is at a different speed. The text
follows a version where the layers are of infinite thickness, which is a bit
more analytically tractable than allowing variable depth like we did in class.
For this case, we assume the flow on either side of the interface is irrotational
and divide into a base state and a fluctuating component. Because the flow
is irrotational, the velocity potential in each layer follows Laplace’s equation.
The method of solution follows in the text (”Kelvin-Helmholtz Instability”)
and we won’t repeat the math here. However, the same procedure is used
as before, and the velocity potentials phi1 and phi2 each have a vertical
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Figure 11: Kelvin-Helmholtz billows observed in the atmosphere, and visu-
alized with clouds

dependence that given the boundary conditions take the form of decaying
exponentials, and sinusoids in x and t. One gets a dispersion relation relating
c and k for any disturbance:

c =
ρ2U2 + ρ1U1

ρ2 + ρ1
±

#
g

k

ρ2 − ρ1
ρ2 + ρ1

− ρ1ρ2

!
U1 − U2

ρ1 + ρ2

"2
&1/2

(7)

which has imaginary roots, and thus is unstable if

g
'
ρ22 − ρ21

(
< kρ1ρ2 (U1 − U2)

2 (8)

Note that for any given flow there is always a k large enough that this is
true, but in practical cases, if the scale is small enough (high enough k) then
viscosity acts to suppress the growth of the instability. Note the exception
is if U1 = U2, in which case the flow is always stable if ρ2 > ρ1.

Also note that the stronger the density difference, the smaller scale the
growing mode. Conversely, the stronger the shear U1 − U2, the easier it is.
So we often think of stratified shear instability as a competition between
shear producing the turbulence, and the stratification difference between
the layers suppressing it.

Finally note that if ρ1 = ρ2, then flow is always unstable if the two layers
have different flow speeds (c = (1/2) ((U1 + U2)± i(U1 − U2))); such flows
are called a ”vortex sheet”.
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4 INSTABILITY IN VISCOUS BOUNDARY LAYERS

As shown in the text, or videos posted on the course website, these
instabilitites are relatively easy to make both in nature and the lab. Density
differences in the fluid naturally give rise to shear in the layers, whereas in
the homogenous shear instability discussed previously, the shear would have
to be imposed somehow, often via a splitter plate in the flow. Nature doesn’t
have many splitter plates, so stratified shear instability is a more natural
way to create instability.

4 Instability in viscous boundary layers

We saw in the section on boundary layers that viscosity produces the Blasius
profile. If such a profile were not subject to viscous effects, then the profile
that is formed would be stable. However, viscosity is clearly non-negligible
in such flows. Similarly, we usually think of viscosity as suppressing the
growth of instabilities because it damps the growth of the perturbations
that arise.

However, clearly at high enough Reynolds numbers this intuition breaks
down and boundary layers develop turbulence. For pipe flow its found that
for Re > 3000 the flow will transition to turbulence, though if you are very
careful the transition can be delayed until the Reynolds number is another
order of magnitude larger. The reason is almost certainly that the non-linear
terms matter and a linear perturbation analysis drops too much physics from
the problem. The linear perturbation analysis is quite successful at inviscid
problems, but has trouble making simple predictions for viscous problems.
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