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1 Introduction

The study of turbulence is necessarily hampered by the fact that turbulence
is inherently strongly non-linear. In the previous notes we saw that variance
grows at the most unstable wavenumber quickly, but it also cascades to
higher and lower wavenumbers. This is due to those modes growing, but
also due to the fast-growing modes interacting with one another randomly
and eventually tearing each other apart into turbulence. This is seen in
detail in a numerical simulation (figure 1 on the following page) where only
two vortices are created, but they still interact with one another and create
homogeneous turbulence.

If the Reynolds number of the flow is great enough, the flow develops
what we call ”homogeneous” turbulence, where the turbulent fluctuations
stop carrying a memory of the instability that formed them and they have
universal statistical properties.

2 Turbulent scales and spectra

These universal statistical properties are often expressed as power spectra.
So while we do not know what the velocity or value of any particular tracer
is at any time or place, we can characterize its variance as a function of
frequency and wavenumbers. An example of this was shown in the previous
write up. Another example is shown in figure 2 on page 3 for the simulation
in figure 1 on the following page and compared to observations.

This was of thinking about turbulence leads to a few very powerful, but
ultimately empirical results. These results largely follow from dimensional
analysis which is surprisingly effective in this context.
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Figure 1: Numerical simulation [Smyth et al., 2005] of a shear isntability
transitioning to turbulence.
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Figure 2: Power spectra of tracer variance from [Smyth et al., 2005] com-
pared to oceanic observations of tracer spectra. The wavenumber k has been
scaled to match a universal form

2.1 Kolmogorov wavenumber and Inertial subrange

First, it is important to determine the variables that are important to the
turbulence. In steady state, the rate that energy is put into the turbulence
is equal to the rate that it is removed, by viscous dissipation, which we
usually denote ¢ [m?s3]. The other variable that sets the scale at which
viscosity overcomes the turbulence is the strength of the viscosity v [m?s1].
These two variables combined set the scale at which turbulent fluctuations
die off, which we represent by a wavenumber k, = e/4v=3/4. This scale
is small for most flows and actually gets smaller as the strength of the
turbulence (e€) increase. In a turbulent channel in the waters near here,
€ ~ 107* m? s73 we get a value of ks =~ 3000 rad/m or a length scale of 1
mm. This wavenumber, kg, is called the Kolmogorov wavenumber. We can
similarly use scaling analysis to say that the shortest time scale of motion
is t, ~ (v/e)'/2

This scaling works very well for predicting the scale at which turbulence
decays. Measurements in Knight Inlet BC made by Ann Gargett (who is
an emeritus professor here) show that as the wavenumber approaches kg the
power spectrum of the velocity variance drops off rapidly (figure 3 on the
next page).

It is also relatively clear that the spectra have a universal slope at lower
wavenumbers. This region of wavenumber space between the viscous sub-
range and the large scales at which energy in input is called the ”inertial
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Figure 3: Power spectra of a) velocity and b) tracer variance collected from
a submersible in Knight Inlet [Gargett et al., 1984]. In a) the horizontal
wavenumber is scaled by the Kolmogorov scale ks. In b) it is normalized by
the Batchelor wavenumber.

subrange”. In this subrange, the spectrum only depends on the strength of
the turbulence, € and the wavenumber k. A velocity spectrum ¢ in wavenum-
ber space has units of m?s™2/cpm or m®s~2, so dimensional analysis says
that ¢ ~ €2/3k=5/3, and indeed this is the slope of the spectra shown in
figure 3a.

2.2 Tracer subranges

For a passive tracer, variance is destroyed at a rate y [K2s~!], by diffusion
k instead of viscosity. For instance for heat, variance is smoothed out by
thermal diffusion. In this case the smallest scale of variance depends on
three variables, €, v and k. Since k and v have the same units we cannot
appeal just to dimensional analysis to determine the power laws, but instead
consider that the Batchelor scale is the scale at which the time to dissipate
the energy at that scale is equal to the time it takes to diffuse the variance
away, vielding ky = et/4y~14x=2/4,

Hence for a tracer, we have a complicated situation where energy is put
in at large scales (figure 4 on the next page), there is an ”inertial subrange”
where both momentum and the tracer are stirred in tandem (k < k). In
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this range ¢ ~ k~%/3, or in figure 4, Gardz ~ k/3. At some point viscosity

becomes important, and the power law changes to depend on k, €, x, and v.
These do not uniquely give the power law in the next subrange, called the
”viscous-convective” subrange, but it turns out that ¢7 ~ k= (or ¢gp /dz ™
k') as in figure 4). The third subrange is the “diffusive” subrange where
diffusivity finally becomes important at the highest wavenumbers.
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Figure 4: Schematic temperature gradient spectrum [Dillon and Caldwell,
1980]. «v is the scale to which momentum and tracer are stirred without
the effect of viscosity. «; is the Kolmogorov wavenumber, and ap is the
Batchelor wavenumber.

The universality of these spectral shapes is quite impressive for high-
Reynolds number flows, such as those found in the ocean figure 5 on the
following page, though it is notoriously hard to observe the viscous subrange
because it is so small. The measurements made in figure 5 on the next page
are possibly using a small-scale thermocouple, but this instrumentation is
not very long lasting in seawater.

As a note on the universality of the spectra - this has mostly only been
shown in geophysical flows where there is a large scale separation between
the Kolmogorov scale and/or Batchelor scale and the scale at which shear
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Figure 5: Spectra of temperature gradient measured in the ocean using a
small-scale thermistor, and a smaller thermo-couple [Nash et al., 1999]. Note

the Batchelor scale is order 4 mm to 1 cm in these measurements, and it is
very hard to make measurements to such small scales.
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develops. For a small pipe, a few centimeters across, the Kolmogorov scale
may be less than an order of magnitude smaller than the pipe, and that may
not be enough ”wavenumber space” for an inertial subrange to develop.
Hence the first observations of these universal spectra were made in very
energetic turbulence in the ocean - the first such observation was made by
Grant et al. [1962] based out of DREP in Esquimalt by taking velocity
measurements in Seymour Narrows between Vancouver Island and Quadra
Island.

2.3 Measuring turbulence

Measuring turbulence is notoriously difficult. In the laboratory, it requires
small-scale velocity measurements. Approaches include

e High-frequency acoustic measurements that depend on the time-of-
flight of sound pulses or the Doppler effect on particles in the water.

e Sheets of lasers on suspended particles in the fluid and video cameras
that track the motion of the particles in the sheets.

e Temperature probes to measure small-scale fluctuations in tempera-
ture.

Geophysical measurements are hard in that they often have trouble con-
textualizing the flow that the turbulence is found in. However, they have
the advantage that the turbulence is very strong, and hence the measure-
ments can be a bit cruder. In the ocean, we either tow or profile vehicles
(figure 6 on the following page) equipped with shear probes and high-speed
thermistors (figure 7 on the next page). An example from my thesis exhibits
some of the challenges with these methods (figure 8 on page 9). These are
measurements from Knight Inlet, with strong stratified tidal flow over an
underwater sill. Collected with a vertical profiling instrument, the data
collection is sparse compared to the size of the flow, and multiple repeat
passes over the sill necessary to characterize the flow. However, the flow is
constantly changing over the 12.4-h tidal cycle, so even these snapshots are
fragmentary.
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Figure 6: Oceanic vehicles for measuring ocean turbulence [Klymak and
Nash, 2009]. The upper three are vertical profilers that fall freely from a
ship. The bottom is a towed instrument, similar to that used by Grant et al.
[1962], Gargett et al. [1984].
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Figure 7: Probes for measuring ocean turbulence [Klymak and Nash, 2009].
Left, a fine-scale thermistor, a (fragile) microconductivity probe (with two
anodes and two electrodes), and a piezo-electric shear probe.



2. TURBULENT SCALES AND SPECTRA

DEPTH/m

DEPTH/m

T T log, (/W kg ™)
-100 0 100 200 300 400
WEST - EAST/m

T
-300 -200

Figure 8: Turbulence measured from a turbulence profiler deployed in
Knight Inlet [Klymak and Gregg, 2004]. Flow is visualized using high-
frequency acoustics scattering off both biology (zooplankton) and sharp gra-
dients in salt caused by turbulence (and of course the seafloor). The colored
tracks are turbulence dissipation rates measured by the profiler. The flow is
from right to left, and is blocked by the sill creating a hydraulic flow similar
to the ones studied in class.
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3 Turbulent fluxes

Turbulence leads to much faster diffusion of momentum and tracers. Ulti-
mately, mixing of momentum and tracers must occur at the molecular level
on scales that are quite small. Turbulence stirs the fluid and greatly in-
creases the area over which molecular diffusion acts, as well as acting to
sharpen gradients which also increases turbulence fluxes (figure 9).

The approach we use to quantify this extra mixing is at its heart empir-
ical. However, some important quantities in this empirical exercise can be
derived if we divide the flow into "mean” and ”fluctuating” components in
a procedure known as ”Reynolds Averaging”.

Figure 9: Schematic of the importance of turbulence stirring to molecular
diffusion.

Here we write the equations of motion and decompose into a mean com-
ponent and a fluctuating component (denoted with primes). For reference,
the full equations of motion, including a buoyancy term due to the temper-
ature of the water are:

on . _ . 1. ~ -

EqLu.Vu = —;Vp—g{l—a(T—To)]kqtuV?u
V-a = 0

oT . .

—4+a-VT = i1

8t+u \Y KV

where we have included a buoyancy term in the z momentum equation and
« is a "thermal expansion” co-efficient that is linear around Tj.
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The Reynolds decomposition is to then say

a = U+
p = P+y
T T+1T

where over some spatial or temporal interval the turbulent quantities are
zero: u' =p' =T'=0.
These are then substituted into the equations of motion:

8<ué;;U)4—(u+U)-V(u+U) = _,})V(P+p')—9[1—0(T+T/—T0)]k+VV2(u+U)
V-(u+U) = 0
AT +T)

5 tu+U): V(T+T) = kVX(T+T)
And then we take the same average that defined the Reynolds decomposi-
tion. i.e. for the continuity equation:

V-u+U)=V-U+V-u=0 (1)

But the second term averages to zero because V-u = V -u = 0, so this
means that V- U = 0. Subtracting from the full continuity equation this
means that V- u = 0 as well.

The same procedure on the momentum equation yields an equation for
the slowly evolving flow of:

%—?+U-VU—I—U~VUZ —%VP—g[l—a(T—Tg)]k+VV2U (2)
where the only term that remains from the turbulent quantity is the quadratic
term in u.

The terms represented by u - Vu are the turbulent stresses, as opposed
to the viscous stresses that are encapsulated by the last term. This is the
only place in this class where Einstein notation would be very useful, but
lets just write out the x-momentum terms of this equation

u-Vui = v—u+v—u+w=—u

ox oy 0z



3. TURBULENT FLUXES

and then we note the analogue to the viscous terms in the x-momentum

equation:
0 oU 0 oU 0 oU
2 . — R RS JE— R JE— -
vWIU - ox (Vﬁx)+0y(yay>+8z(yﬁz>

where recall that we said the viscous stress transporting x-momentum in
the z-direction was 7., = —l/%—g. So in direct analogy, we say that —uw is
the turbulent stress that carries x-momentum in the z-direction. Similarly
—u is turbulent stress carrying x-momentum in the z-direction and —u? is
turbulent stress carrying x-momentum in the x-direction.

To better understand this transfer of momentum, consider a flow in the
x-direction that is sheared in the vertical (figure 10). If there is a turbulent
w < 0 in the flow, it tends to bring faster water down with it, meaning on
average u > 0, and hence —uw > 0 and positive x-momentum is transfered
down. Exactly the same direction of momentum transfer happens if w > 0
and transporting slower fluid up in the water column, and hence the average
of —ww is a ”stress” on the flow seeking to homogenize the momentum. This
is the same sense that the momentum is homogenized molecularly by 7.

Figure 10: Sketch of sheared flow and the effect of positive and negative
fluctuations in w’ on the flow.

Given the analogy with molecular viscous stress, its quite natural to seek
a parameterization of the turbulent stresses in terms of the large scale flow,
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and indeed this is what is done in numerical simulations that cannot hope
to resolve the full spectrum of turbulence. In the most general case we say

u-Vu=krV:U (3)

which is equivalent to saying that the turbulent stress is proportional to the
mean shear. e.g. for the x-momentum equation:

u-vu-i=rpV2U (4)

In general k7 is much larger than v and the turbulent mixing dominates the
molecular. The challenge, of course, is knowing what kp should be. This
is an empirical and field-dependent endeavour, and is still a topic of heavy
research.

4 Notes on numerically simulating turbulent flows

Turbulent flows are very hard to simulate numerically. In 2020, a super-
large gigantic super computer cluster consists of 64k cores. A good rule
of thumb is no more than domain sizes that as 643 in size. If we divide
the 64k cores evenly among all three directions, we get a domain size of
256k cells in each direction. If we are to resolve the Kolmogorov scale for
moderately strong turbulence of € ~ 1075 m2s3, then 7 = 1lmm and our
numerical simulation will extend 256 m in each direction. This would be a
truly fabulous simulation but extremely expensive as we would also have to
resolve the CFL criteria of the flow. In the ocean this is on the order of 1
m/s, so our 1 mm grid cells would require timesteps of less than 0.001 s.
The problem worsens when the dissipation rate increases.

Such expensive direct numerical simulations (DNS) are not generally
carried out, and whenever DNS is applied usually much smaller domains
are considered (i.e. figure 1 on page 2). A less intensive method to approx-
imate turbulence is to suppose that the model resolves the big billows in
the instability, i.e. the roll-ups in figure 1 on page 2, and then applies an
enhanced viscosity where it resolves strong shear. The strength of this en-
hanced viscosity does not matter too much because it generally just acts to
destroy whatever is caught in the roll-up. This approach is called large eddy
simulation (LES) and is naturally less precise than DNS, but only needs
resolution on the scale of the breaking eddies (say 10-s of cm) versus the
Kolmogorov scale (mm).

Finally, there are even cruder parameterizations that apply when the
simulation cannot resolve the turbulent roll-ups. For instance a global ocean
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simulation will often be run at scales of 10-s of kilometers (or 100s) and will
have no hope of simulating shear instabilities, even relatively large ones like
we would find in large-scale lateral instabilities. In these cases, turbulence
is usually estimated from large-scale shear OU/0z and the change of strati-
fication dp/0z. If the ratio of these becomes too high, the flow is assumed
to become turbulent and mixing is applied until the ratio drops again. In
general this works fine to keep the model running, but it will drift from
observed conditions over longer time scales, and hence the model usually
needs to be nudged back to reality via assimilation of observations.
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