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1 Introduction

The study of turbulence is necessarily hampered by the fact that turbulence
is inherently strongly non-linear. In the previous notes we saw that variance
grows at the most unstable wavenumber quickly, but it also cascades to
higher and lower wavenumbers. This is due to those modes growing, but
also due to the fast-growing modes interacting with one another randomly
and eventually tearing each other apart into turbulence. This is seen in
detail in a numerical simulation (figure 1 on the following page) where only
two vortices are created, but they still interact with one another and create
homogeneous turbulence.

If the Reynolds number of the flow is great enough, the flow develops
what we call ”homogeneous” turbulence, where the turbulent fluctuations
stop carrying a memory of the instability that formed them and they have
universal statistical properties.

2 Turbulent scales and spectra

These universal statistical properties are often expressed as power spectra.
So while we do not know what the velocity or value of any particular tracer
is at any time or place, we can characterize its variance as a function of
frequency and wavenumbers. An example of this was shown in the previous
write up. Another example is shown in figure 2 on page 3 for the simulation
in figure 1 on the following page and compared to observations.

This was of thinking about turbulence leads to a few very powerful, but
ultimately empirical results. These results largely follow from dimensional
analysis which is surprisingly effective in this context.
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2. TURBULENT SCALES AND SPECTRA

Figure 1: Numerical simulation [Smyth et al., 2005] of a shear isntability
transitioning to turbulence.
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2. TURBULENT SCALES AND SPECTRA

going and left-going ends of the collapsing core are just
beginning to interact at the domain center. The !T field
(Fig. 6b) displays a structure similar to the salinity, but
with markedly less small-scale variability (cf. GMH’s
Fig. 2).

Figure 7 shows spectra of the scalar gradients "!# /"z
versus the vertical wavenumber k. Spectra were com-
puted in the vertical direction to facilitate comparison
with profiler measurements. The symbol # is used to
denote either temperature or salinity. Spectra were
computed from 500 vertical profiles sampled randomly
within the domain. For each profile, the turbulent re-
gion was selected, and !# was first-differenced, Hanning
windowed, and Fourier transformed to obtain the
power spectral density $#z

. A correction was applied to
recover variance lost by first differencing. Each spec-
trum was normalized prior to averaging, using the iso-
tropic variance dissipation rate,
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and the Batchelor scale k#
b % ((/)*2

#)1/4 (Batchelor
1959). Also shown on Fig. 7 are spectra computed from
observational data (Nash and Moum 2002) and the
theoretical spectral form of Kraichnan (1968).

The !T spectrum extends further into the small scales
than does the !S spectrum because the former field is
somewhat better resolved with respect to its Batchelor
scale (the ratio of Batchelor scales for the two scalars is
+7 % 2.65; the ratio of grid spacings is 2.0). The spec-
tra of small-scale gradients determined from these
simulations agree very well with both the observations
and the theory. This indicates that the model is repro-
ducing the small-scale physics accurately, and in par-
ticular that the spatial grid resolution is adequate.

At larger scales, correspondence is not as close.
Large-scale gradients are strongly affected by the
evolving fields associated with gravity waves (GMH)
and with the KH instability. In contrast, the theory as-
sumes that the flow is in statistical equilibrium, and the
observations have considerably larger Reynolds num-
bers, thus less influence of the forcing scales in the
viscous–convective and viscous–diffusive subranges,
relative to the DNS. The DNS salinity spectrum peaks
at a higher value than the temperature spectrum, the
theory, or the observations. Both the salinity spectrum
and the observations are systematically higher than the
Kraichnan spectrum in the viscous–convective (k,1)
range.

5. Potential energy, scalar variances, and turbulent
diffusivity

Our objective is to compare the turbulent diffusivi-
ties of the thermal and saline density components !T

and !S in various parameter regimes. Here, we describe
two approaches to this comparison, focusing first on the
evolution of the horizontally averaged scalar profiles
and later on an alternative approach that isolates irre-
versible mixing processes. Additional insight into the
physics of differential diffusion is gained through ex-
amination of scalar variances, whose dissipation rates
are used to estimate turbulent diffusivities in observa-
tional studies.

a. Component potential energies

In the context of vertical mixing of a scalar !# (which
may represent either !T or !S), computation of turbu-
lent diffusivity requires fitting the evolution of the sca-
lar field to a one-dimensional diffusion model, for ex-
ample,
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In (12), the diffusion model is expressed in terms of the
horizontally averaged profile !# - .!#/xy.

There are a number of ways to invert (12) in order to
obtain a single, characteristic value for diffusivity at any
given time. Here, we begin by considering changes in
the specific potential energy associated with the evolu-
tion of each density component:
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In contrast to ( and N2 (cf. section 3), P# is a global
property of the flow. Accordingly, we make no attempt

FIG. 7. Normalized vertical gradient spectra of temperature
(thick dashed curve) and salinity (thick solid curve) for run 1 at
t % 2286 s. Shown for comparison are gradient spectra of salinity
(triangles) and temperature (circles) from 350 ocean turbulence
patches (Nash and Moum 2002). The thin solid curve is the Kra-
ichnan (1968) universal form for the viscous convective and vis-
cous diffusive subranges. The value 7.3 was used for the constant
q (Smyth 1999).
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Figure 2: Power spectra of tracer variance from [Smyth et al., 2005] com-
pared to oceanic observations of tracer spectra. The wavenumber k has been
scaled to match a universal form

2.1 Kolmogorov wavenumber and Inertial subrange

First, it is important to determine the variables that are important to the
turbulence. In steady state, the rate that energy is put into the turbulence
is equal to the rate that it is removed, by viscous dissipation, which we
usually denote ε [m2 s−3]. The other variable that sets the scale at which
viscosity overcomes the turbulence is the strength of the viscosity ν [m2 s−1].
These two variables combined set the scale at which turbulent fluctuations
die off, which we represent by a wavenumber kν = ε1/4ν−3/4. This scale
is small for most flows and actually gets smaller as the strength of the
turbulence (ε) increase. In a turbulent channel in the waters near here,
ε ≈ 10−4 m2 s−3 we get a value of ks ≈ 3000 rad/m or a length scale of 1
mm. This wavenumber, ks, is called the Kolmogorov wavenumber. We can
similarly use scaling analysis to say that the shortest time scale of motion
is tν ≈ (ν/ε)1/2.

This scaling works very well for predicting the scale at which turbulence
decays. Measurements in Knight Inlet BC made by Ann Gargett (who is
an emeritus professor here) show that as the wavenumber approaches ks the
power spectrum of the velocity variance drops off rapidly (figure 3 on the
next page).

It is also relatively clear that the spectra have a universal slope at lower
wavenumbers. This region of wavenumber space between the viscous sub-
range and the large scales at which energy in input is called the ”inertial
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2. TURBULENT SCALES AND SPECTRA

Figure 3: Power spectra of a) velocity and b) tracer variance collected from
a submersible in Knight Inlet [Gargett et al., 1984]. In a) the horizontal
wavenumber is scaled by the Kolmogorov scale ks. In b) it is normalized by
the Batchelor wavenumber.

subrange”. In this subrange, the spectrum only depends on the strength of
the turbulence, ε and the wavenumber k. A velocity spectrum φ in wavenum-
ber space has units of m2s−2/cpm or m3 s−2, so dimensional analysis says
that φ ∼ ε2/3k−5/3, and indeed this is the slope of the spectra shown in
figure 3a.

2.2 Tracer subranges

For a passive tracer, variance is destroyed at a rate χ [K2s−1], by diffusion
κ instead of viscosity. For instance for heat, variance is smoothed out by
thermal diffusion. In this case the smallest scale of variance depends on
three variables, ε, ν and κ. Since κ and ν have the same units we cannot
appeal just to dimensional analysis to determine the power laws, but instead
consider that the Batchelor scale is the scale at which the time to dissipate
the energy at that scale is equal to the time it takes to diffuse the variance
away, yielding kb = ε1/4ν−1/4κ−2/4.

Hence for a tracer, we have a complicated situation where energy is put
in at large scales (figure 4 on the next page), there is an ”inertial subrange”
where both momentum and the tracer are stirred in tandem (k < k∗). In
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2. TURBULENT SCALES AND SPECTRA

this range φT ∼ k−5/3, or in figure 4, φdT/dz ∼ k1/3. At some point viscosity
becomes important, and the power law changes to depend on k, ε, χ, and ν.
These do not uniquely give the power law in the next subrange, called the
”viscous-convective” subrange, but it turns out that φT ∼ k−1 (or φdT/dz ∼
k1) as in figure 4). The third subrange is the “diffusive” subrange where
diffusivity finally becomes important at the highest wavenumbers.

DILLON AND CALDWELL: DISSIPATION IN THE UPPER OCEAN 1911 

1.0 

0.1 

S(k)k e D 
q,/'•'• Xe 

O.Ol 

o OOl 

_\ 

I i i i 
0.0001 0.001 0.01 O. I 1.0 

O• (cycles/cm) 

Fig. 1. Nondimensional universal spectrum with a 'fine structure' 
range for a < aR, the Richardson wave number; an inertial subrange 
for aR < a < a,; and a viscous-convective Batchelor spectrum for a > 
a,. The positions of the Kolmogorov wave number as and Batchelor 
wave number aB are determined by choice of the universal constant q 
(2(3) •/2 assumed here), while the shape of the spectrum for a > a, is 
independent of universal constants. The inertial subrange is rarely ob- 
served in vertical microstructure. 

Nondimensionalizing the spectrum by the Batchelor scale 
kB and X0 yields the equilibrium range spectrum (Figure 1) 

S(k){(q/2) '/2 Xk-•}-'=f(a ) a>_a, 

where a, = C, Pr-•/2(2q)'/2 and a• marks the wave number at 
which the free structure and internal wage effects become ap- 
preciable. Continuity at k, establishes the relation between q, 
fi, and C, as [Williams and Paulson, 1977] 

fi = qC, 2/• (6) 
Gibson [1968] advanced a theoretical argument that 3'/2 < q 

< 2(3)•/:; Grant et al. [1968] estimated q -- 3.9 ñ 1.5 and C, -- 
0.024 +_ 0.008 (standard error estimates). Williams and Paulson 
[1977] found from inertial subrange measurements in air that 
fi -• 0.5 and noted a small but definite dependence of • upon 
Reynolds number. The atmospheric measurements of • are 
surely more accurate than one could reasonably expect from 
marine measurements, and there is no reason to expect iner- 
tial subrange parameters such as fi to depend on Prandtl num- 
ber. If q is 2(3) •/2 and • is 0.5, C, becomes 0.055, twice as 
large as the value found by Grant et al. [1968] and sub- 
stantially larger than the values 0.03 and 0.04 found by Gibson 
et aL, [1970] but only haftthe value of 0.1 estimated by Gibson 
and Schwarz [1963] from laboratory measurements. There is 
thus a large uncertainty regarding the value of C,. 

If dissipation rates are to be estimated from the cutoff fre- 
quency of the Batchelor spectrum, q is the only relevant uni- 
versal constant. A percentage error in q is reflected as a sys- 
tematic error twice as large in E. This error may not be as large 
as that resulting from direct high-frequency velocity determi- 
nations of E in water and will not affect relative measures of e, 
so that depth variability can be assessed without error from 
this source. 

Although the Batchelor spectrum was proposed for homog- 
eneous, locally isotropic turbulence in an unstratified fluid 
with large Prandtl number, it is clear, in contrast to inertial 
subrange turbulence, that the spectral form is not an asymp- 
totic limit of high Reynolds number turbulence. Batchelor 

[1959] suggests that even when the Reynolds number is so 
small that an inertial subrange does not exist, the Batchelor 
form may be found. ' 

The effect of stratification on the Batchelor spectrum, how- 
ever, has not been explored. In natural waters (Prandtl num- 
ber of the order of 10), temperature fluctuations are usually 
caused by turbulent stirring in the presence of a mean gradi- 
ent. The level of turbulence relative to the stratification is 
likely to be important in determining the scale at which local 
isotropy is approached and in determining whether or not a 
Batchelor spectrum is found. 

A measure of the turbulence relative to the stratification 
may be constructed in the form of a 'stratification Reynolds 
number' Rs = Ulv-', where U is estimated as •/31•/3 [Tennekes 
and Lumley, 1972] and the length scale is estimated as the 
Richardson length I = e•/2N-3/2, where N is the local buoy- 
ancy frequency. Thus Rs reduces to (ev-')N -2, a squared ratio 
of time scales of the turbulence and stratification. If E is esti- 
mated by the Cox number Cx = ((dT'/dz)2)/(dT/dz) 2 and N 
[Caldwell et al., 1980], e is proportional to DN2Cx, so that Rs 
is proportional to Pr-'Cx. We might therefore expect that the 
approach to the Batchelor spectrum in a stratified natural 
fluid would depend on the Cox number. 

We imagine that for small Cox number (turbulence weak 
compared to the stratification), small-scale temperature fea- 
tures which are possibly remnants of the mean stratification 
may exist at wave numbers large enough to coincide with 
wave numbers in the viscous-convective subrange and alter 
the low wave number portion of the Batchelor spectrum. A 
similar situation was hypothesized by Gregg [1977], who, upon 
examining spectra from the main oceanic thermocline, which 
somewhat resembled the Batchelor spectrum but failed to re- 
veal a distinct linear range, supposed that the low wave num- 
ber viscous-convective spectrum was 'contaminated' by the 
fine structure-internal wave spectrum. 

In the remainder of this work, following a brief experimen- 
tal description, we report that for large Cox number in the 
oceanic surface layer the Batchelor spectrum closely approxi- 
mates observed spectra. For smaller Cox number the observed 
spectra depart significantly from the Batchelor form, showing 
a broader, less peaked shape. We then present depth profiles 
of dissipation calculated by the cutoff wave number technique 
and compare profiles taken during low and high winds. 

EXPERIMENTAL DESCRIPTION 

The vertical microstructure profiles to be discussed here 
were collected at ocean station P during August-September 
1977 as part of the Mile experiment. The microstructure pro- 
filer used was a small, winged, nearly freely falling device sim- 
ilar to that described by Caldwell et al. [1975]. The fall rate is 
adjustable; for these runs it was set at 10 cm s -•. The probe 
carried two thermistors, a Neil Brown conductivity sensor, 
and a pressure sensor. The data were transmitted to the ship 
through a small-diameter (1.6 mm) cable containing four 
pairs of expendable bathythermograph (XBT) wire sheathed 
in a Kevlar strength member and coated with syntactic foam; 
the foam density is adjusted so that the entire cable has a 
slight tendency to sink. 

One thermistor Was redundantly amplified, and the two sig- 
nals were sent to the surface through different wires, where it 
was again amplified, differentiated, filtered with a 12-pole 
Butterworth filter (3-dB frequency set at 30 Hz), and then dig- 
itized and recorded at a rate of 90 s -•. Since most of the noise 

Figure 4: Schematic temperature gradient spectrum [Dillon and Caldwell,
1980]. α∗ is the scale to which momentum and tracer are stirred without
the effect of viscosity. αs is the Kolmogorov wavenumber, and αB is the
Batchelor wavenumber.

The universality of these spectral shapes is quite impressive for high-
Reynolds number flows, such as those found in the ocean figure 5 on the
following page, though it is notoriously hard to observe the viscous subrange
because it is so small. The measurements made in figure 5 on the next page
are possibly using a small-scale thermocouple, but this instrumentation is
not very long lasting in seawater.

As a note on the universality of the spectra - this has mostly only been
shown in geophysical flows where there is a large scale separation between
the Kolmogorov scale and/or Batchelor scale and the scale at which shear
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FIG. 9. Mean nondimensional temperature gradient spectra for four different ranges of e defined by21C k D xT b T Tz

Batchelor wavenumber (in cpm): (a) kb , 100, (b) 100 , kb , 150, (c) 150 , kb , 200, and (d) kb . 200. Spectral
estimates from thermistor measurements are represented by open circles; triangles represent those from the thermocouple.
Error bars represent 95% bootstrap confidence limits. Profiles were made at 1.2 m s21 and no corrections for frequency
response have been applied. The solid lines represent Batchelor spectra with q 5 3.7 calculated for the mean e and xT

of the included patches.

FIG. 11. Theoretical spectra of temperature gradient (Batchelor
1959) for a range of xT and e relative to the thermocouple noise (1.2
m s21 profiling speed).

FIG. 10. As in Fig. 9 except for patches observed while profiling
at 0.3 m s21. Only patches with kb . 200 cpm are shown.

Figure 5: Spectra of temperature gradient measured in the ocean using a
small-scale thermistor, and a smaller thermo-couple [Nash et al., 1999]. Note
the Batchelor scale is order 4 mm to 1 cm in these measurements, and it is
very hard to make measurements to such small scales.
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2. TURBULENT SCALES AND SPECTRA

develops. For a small pipe, a few centimeters across, the Kolmogorov scale
may be less than an order of magnitude smaller than the pipe, and that may
not be enough ”wavenumber space” for an inertial subrange to develop.
Hence the first observations of these universal spectra were made in very
energetic turbulence in the ocean - the first such observation was made by
Grant et al. [1962] based out of DREP in Esquimalt by taking velocity
measurements in Seymour Narrows between Vancouver Island and Quadra
Island.

2.3 Measuring turbulence

Measuring turbulence is notoriously difficult. In the laboratory, it requires
small-scale velocity measurements. Approaches include

• High-frequency acoustic measurements that depend on the time-of-
flight of sound pulses or the Doppler effect on particles in the water.

• Sheets of lasers on suspended particles in the fluid and video cameras
that track the motion of the particles in the sheets.

• Temperature probes to measure small-scale fluctuations in tempera-
ture.

Geophysical measurements are hard in that they often have trouble con-
textualizing the flow that the turbulence is found in. However, they have
the advantage that the turbulence is very strong, and hence the measure-
ments can be a bit cruder. In the ocean, we either tow or profile vehicles
(figure 6 on the following page) equipped with shear probes and high-speed
thermistors (figure 7 on the next page). An example from my thesis exhibits
some of the challenges with these methods (figure 8 on page 9). These are
measurements from Knight Inlet, with strong stratified tidal flow over an
underwater sill. Collected with a vertical profiling instrument, the data
collection is sparse compared to the size of the flow, and multiple repeat
passes over the sill necessary to characterize the flow. However, the flow is
constantly changing over the 12.4-h tidal cycle, so even these snapshots are
fragmentary.
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2. TURBULENT SCALES AND SPECTRA

Direct Eddy Correlation

With careful and specialized measurements it is
possible to estimate mixing by quantifying the stir-
ring of the fluid. As described above, this means
quantifying the stirring of cold water upward into
warm water by measuring vertical velocity fluctu-
ations, w0, and temperature fluctuations, T 0.

One of the few attempts to apply this method in the
open ocean demonstrates its difficulty (Figure 4).
Temperature and velocity were acquired along a
horizontal path using a towed instrument outfitted
with thermistors and shear probes. While the raw
signals are large and very active (Figure 4(a)), the
product w0T 0 is not one-sided. Instead, it has in-
stantaneous values that are large and can be of either
positive and negative sign, such that the fluctuations
are far greater than the mean correlation /w0T 0S.
This is a general problem since turbulence is sporadic,
and stirring is both downgradient (i.e., transports heat
from regions of warm fluid) and upgradient (i.e.,
transports heat to regions of warm fluid), the latter
representing restratification of partially mixed fluid.
Since much of w0T 0 is reversible (i.e., just stirring fluid

that is not immediately mixed), the eddy correlation
technique must be made over long times to produce
stable estimates of the irreversible flux. In this case,
the background vertical gradient dT=dz is positive,
so /w0T 0So0 represents a downgradient flux, as
appears most frequently in Figure 4(b).

This method does not enjoy wide use. Determining
what is ‘mean’ and what is ‘turbulent’ is very difficult
from the limited measurements possible with a ver-
tical or horizontal profiler. The data presented here
were simply bandpassed, with large scale motions
considered to be nonturbulent. However choosing
what is ‘large scale’ requires some art. A second
difficulty is estimating the vertical velocities in the
ocean. In this instance, the vertical velocities were
w0E0.03m s! 1, large enough that the method was
deemed possible. The final limitation is gathering
enough statistics of the turbulence to make estimates
of mean fluxes.

Microscalars (Osborn–Cox method)

In contrast to measuring the fine-scale stirring of the
tracer (i.e., /w0T 0S above), the Osborn–Cox method

Figure 3 Microstructure platforms that the authors have worked with. In all cases the sensors are on the nose of the vehicles. The
upper three are profilers. Left to right: Absolute velocity profiler (University of Washington), advanced microstructure profiler (University of
Washington) and Chameleon (Oregon State University). The lower instrument, Marlin (Oregon State University), is towed.

3700 ESTIMATES OF MIXING

Figure 6: Oceanic vehicles for measuring ocean turbulence [Klymak and
Nash, 2009]. The upper three are vertical profilers that fall freely from a
ship. The bottom is a towed instrument, similar to that used by Grant et al.
[1962], Gargett et al. [1984].

measurements to higher wavenumbers (Figure 7).
Unfortunately, the spectral levels and wavenumber
extent of the spectrum both depend on the turbulent
kinetic energy dissipation rate e, so an independent
measure of microscale shear variance (see below) is
required to accurately apply such corrections.

It is also possible to use microconductivity probes
to measure temperature on spatial scales of 10! 3m
(Figure 5, center panel). Conductivity is a rapid
measurement, so speed through the water does not
limit probe response, only the physical configuration
of the probes. The difficulty with this measurement is

that conductivity depends on both the temperature
and salinity of seawater. Thus, microconductivity
works best for determining the mixing rate of tem-
perature in water that has small salinity variations.

The last difficulty, shared with the other micro-
scale methods, is that turbulence is intermittent, so a
large number of samples need to be made in order to
characterize the turbulence level of a given locale.
However, unlike the estimate /w0T 0S, w is a direct
measure of irreversible mixing, so does not need
multiple realizations of the same turbulent event to
converge.
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Figure 5 Three common sensors used on microstructure instruments. Left: A glass-bead thermistor (Gregg, 1999); upper scale in
mm. Center: a four-electrode microconductivity probe (Nash and Moum, 1999). 1–4 are electrodes and 5 is an insulating glass. Right:
Schematic of a piezoelectric shear probe (Gregg, 1999).
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Figure 6 Microscale data collected using the towed vehicle Marlin in the open ocean (Moum et al., 2002). This data was collected
with the instrument moving at 1ms! 1, so time is equivalent to distance in m. (a) Temperature, (b) temperature gradient, (c) and
(d) velocity gradients (shear). Note that where there is high velocity variance there is usually high temperature variance.
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Figure 7: Probes for measuring ocean turbulence [Klymak and Nash, 2009].
Left, a fine-scale thermistor, a (fragile) microconductivity probe (with two
anodes and two electrodes), and a piezo-electric shear probe.
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MAY 2004 1141K L Y M A K A N D G R E G G

FIG. 6. Two lines of data made past the sill crest during ebb collected by AMP (a) at 1800–1815 UTC 2 Sep. Flow is
from right to left. AMP drops are colored by the observed dissipation rate (using 1-m averages). An estimated profiler path
is shown for each drop, based on ADCP velocities and the ship’s position. Drop numbers are shown along the top of the
figure. AMP drops show enhanced turbulence through the billows near 25-m depth (b) at 1856–1913 UTC 2 Sep.

from shear or breaking of the lee wave is difficult. Far-
ther downstream (drop 15914), the turbulence below 75
m was not clearly associated with features in the echo
sounder, suggesting the importance of breaking waves.
By 2.1 km (drop 15913) there was almost no turbulence
in the flow.

e. Three-dimensionality of the turbulence during
flood

During flood tide there was large cross-inlet vari-
ability in the dissipation, as expected from the large
cross-inlet variability of the flow (Klymak and Gregg
2001). On August 26 two cross-inlet lines were re-
peatedly occupied, one at the sill crest and the second
1.5 km downstream (Fig. 11). There was an hourglass-
shaped jet of landward-flowing water at middepth
flanked by two counterflowing jets [discussed in detail
by Klymak and Gregg (2001)]. At middepth, the land-
ward jet was less than 300 m wide, creating a compli-
cated pattern of shear in the flow. The shear lines be-
tween the landward jet and the counterflows were pop-
ulated by increased backscatter showing undulations
with 25-m amplitudes (i.e., at20.4 km and 50-m depth;
Fig. 11b). These undulations appear as large overturns
in the SWIMS CTD data implying dissipation rates close
to ´ 5 1024 W kg21 centered on the landward jet (Fig.

11c). The rapid return flow on the south side of the
channel also appeared turbulent, but the slow return flow
on the north side was mostly quiescent.

f. Upinlet turbulence

Sampling was concentrated near the sill, but some
data were collected far enough away from the sill that
an average profile of turbulent dissipation can be
formed. Considering all drops made 6 km or more away
from the sill, the dissipation rate was modest (Fig. 12).
The turbulence profile was generally as high as ´ 5
1027 W kg21 in the upper water column, and ´ 5 1028

W kg21 at 100-m depth. Below 100 m it was 1029 ,
´ , 1028 W kg21, though the small number of samples
below 100 m may have biased this number.
A larger ensemble of profiles made upinlet were col-

lected while following nonlinear internal wave packets.
In order to not bias the average, these profiles were not
included in the average presented. These packets man-
ifested themselves as a series of rapid undulations in
the near-surface pycnocline. These ‘‘solibores’’ had dis-
sipations reaching ´ 5 1025 W kg21 in limited patches,
approximately 1000 m 3 10 m (Fig. 13). The structure
of this example was not dissimilar to the lee waves, with
a turbulent shear layer along a bottom interface.

Figure 8: Turbulence measured from a turbulence profiler deployed in
Knight Inlet [Klymak and Gregg, 2004]. Flow is visualized using high-
frequency acoustics scattering off both biology (zooplankton) and sharp gra-
dients in salt caused by turbulence (and of course the seafloor). The colored
tracks are turbulence dissipation rates measured by the profiler. The flow is
from right to left, and is blocked by the sill creating a hydraulic flow similar
to the ones studied in class.
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3. TURBULENT FLUXES

3 Turbulent fluxes

Turbulence leads to much faster diffusion of momentum and tracers. Ulti-
mately, mixing of momentum and tracers must occur at the molecular level
on scales that are quite small. Turbulence stirs the fluid and greatly in-
creases the area over which molecular diffusion acts, as well as acting to
sharpen gradients which also increases turbulence fluxes (figure 9).

The approach we use to quantify this extra mixing is at its heart empir-
ical. However, some important quantities in this empirical exercise can be
derived if we divide the flow into ”mean” and ”fluctuating” components in
a procedure known as ”Reynolds Averaging”.

Figure 9: Schematic of the importance of turbulence stirring to molecular
diffusion.

Here we write the equations of motion and decompose into a mean com-
ponent and a fluctuating component (denoted with primes). For reference,
the full equations of motion, including a buoyancy term due to the temper-
ature of the water are:

∂ũ

∂t
+ ũ ·∇ũ = −1

ρ
∇p̃− g

!
1− α(T̃ − T0)

"
k+ ν∇2ũ

∇ · ũ = 0

∂T̃

∂t
+ ũ ·∇T̃ = κ∇2T̃

where we have included a buoyancy term in the z momentum equation and
α is a ”thermal expansion” co-efficient that is linear around T0.
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3. TURBULENT FLUXES

The Reynolds decomposition is to then say

ũ = U+ u′

p̃ = P + p′

T̃ = T + T ′

where over some spatial or temporal interval the turbulent quantities are
zero: u′ = p′ = T ′ = 0.

These are then substituted into the equations of motion:

∂(u+U)

∂t
+ (u+U) ·∇(u+U) = −1

ρ
∇(P + p′)− g

#
1− α(T + T ′ − T0)

$
k+ ν∇2(u+U)

∇ · (u+U) = 0

∂(T + T ′)

∂t
+ (u+U) ·∇(T + T ′) = κ∇2(T + T ′)

And then we take the same average that defined the Reynolds decomposi-
tion. i.e. for the continuity equation:

∇ · (u+U) = ∇ ·U+∇ · u = 0 (1)

But the second term averages to zero because ∇ · u = ∇ · u = 0, so this
means that ∇ · U = 0. Subtracting from the full continuity equation this
means that ∇ · u = 0 as well.

The same procedure on the momentum equation yields an equation for
the slowly evolving flow of:

∂U

∂t
+U ·∇U+ u ·∇u = −1

ρ
∇P − g [1− α (T − T0)]k+ ν∇2U (2)

where the only term that remains from the turbulent quantity is the quadratic
term in u.

The terms represented by u ·∇u are the turbulent stresses, as opposed
to the viscous stresses that are encapsulated by the last term. This is the
only place in this class where Einstein notation would be very useful, but
lets just write out the x-momentum terms of this equation

u ·∇u · i = u
∂

∂x
u+ v

∂

∂y
u+ w

∂

∂z
u

=
∂

∂x
u2 +

∂

∂y
uv +

∂

∂z
uw
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3. TURBULENT FLUXES

and then we note the analogue to the viscous terms in the x-momentum
equation:

ν∇2U · i =
∂

∂x

%
ν
∂U

∂x

&
+

∂

∂y

%
ν
∂U

∂y

&
+

∂

∂z

%
ν
∂U

∂z

&

where recall that we said the viscous stress transporting x-momentum in
the z-direction was τxz = −ν ∂U

∂z . So in direct analogy, we say that −uw is
the turbulent stress that carries x-momentum in the z-direction. Similarly
−uv is turbulent stress carrying x-momentum in the z-direction and −u2 is
turbulent stress carrying x-momentum in the x-direction.

To better understand this transfer of momentum, consider a flow in the
x-direction that is sheared in the vertical (figure 10). If there is a turbulent
w < 0 in the flow, it tends to bring faster water down with it, meaning on
average u > 0, and hence −uw > 0 and positive x-momentum is transfered
down. Exactly the same direction of momentum transfer happens if w > 0
and transporting slower fluid up in the water column, and hence the average
of −uw is a ”stress” on the flow seeking to homogenize the momentum. This
is the same sense that the momentum is homogenized molecularly by τxz.

Figure 10: Sketch of sheared flow and the effect of positive and negative
fluctuations in w′ on the flow.

Given the analogy with molecular viscous stress, its quite natural to seek
a parameterization of the turbulent stresses in terms of the large scale flow,
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4. NOTES ON NUMERICALLY SIMULATING TURBULENT FLOWS

and indeed this is what is done in numerical simulations that cannot hope
to resolve the full spectrum of turbulence. In the most general case we say

u ·∇u = κT∇2U (3)

which is equivalent to saying that the turbulent stress is proportional to the
mean shear. e.g. for the x-momentum equation:

u ·∇u · i = κT∇2U (4)

In general κT is much larger than ν and the turbulent mixing dominates the
molecular. The challenge, of course, is knowing what κT should be. This
is an empirical and field-dependent endeavour, and is still a topic of heavy
research.

4 Notes on numerically simulating turbulent flows

Turbulent flows are very hard to simulate numerically. In 2020, a super-
large gigantic super computer cluster consists of 64k cores. A good rule
of thumb is no more than domain sizes that as 643 in size. If we divide
the 64k cores evenly among all three directions, we get a domain size of
256k cells in each direction. If we are to resolve the Kolmogorov scale for
moderately strong turbulence of ε ∼ 10−6 m2s−3, then η = 1mm and our
numerical simulation will extend 256 m in each direction. This would be a
truly fabulous simulation but extremely expensive as we would also have to
resolve the CFL criteria of the flow. In the ocean this is on the order of 1
m/s, so our 1 mm grid cells would require timesteps of less than 0.001 s.
The problem worsens when the dissipation rate increases.

Such expensive direct numerical simulations (DNS) are not generally
carried out, and whenever DNS is applied usually much smaller domains
are considered (i.e. figure 1 on page 2). A less intensive method to approx-
imate turbulence is to suppose that the model resolves the big billows in
the instability, i.e. the roll-ups in figure 1 on page 2, and then applies an
enhanced viscosity where it resolves strong shear. The strength of this en-
hanced viscosity does not matter too much because it generally just acts to
destroy whatever is caught in the roll-up. This approach is called large eddy
simulation (LES) and is naturally less precise than DNS, but only needs
resolution on the scale of the breaking eddies (say 10-s of cm) versus the
Kolmogorov scale (mm).

Finally, there are even cruder parameterizations that apply when the
simulation cannot resolve the turbulent roll-ups. For instance a global ocean
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simulation will often be run at scales of 10-s of kilometers (or 100s) and will
have no hope of simulating shear instabilities, even relatively large ones like
we would find in large-scale lateral instabilities. In these cases, turbulence
is usually estimated from large-scale shear ∂U/∂z and the change of strati-
fication ∂ρ/∂z. If the ratio of these becomes too high, the flow is assumed
to become turbulent and mixing is applied until the ratio drops again. In
general this works fine to keep the model running, but it will drift from
observed conditions over longer time scales, and hence the model usually
needs to be nudged back to reality via assimilation of observations.
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