matplotlib.pyplot.cohere¶
-
matplotlib.pyplot.
cohere
(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x7fba54bf6820>, window=<function window_hanning at 0x7fba54bf6160>, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, *, data=None, **kwargs)[source]¶ Plot the coherence between x and y.
Plot the coherence between x and y. Coherence is the normalized cross spectral density:
\[C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}\]Parameters: - Fsfloat, default: 2
The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit.
- windowcallable or ndarray, default:
window_hanning
A function or a vector of length NFFT. To create window vectors see
window_hanning
,window_none
,numpy.blackman
,numpy.hamming
,numpy.bartlett
,scipy.signal
,scipy.signal.get_window
, etc. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment.- sides{'default', 'onesided', 'twosided'}, optional
Which sides of the spectrum to return. 'default' is one-sided for real data and two-sided for complex data. 'onesided' forces the return of a one-sided spectrum, while 'twosided' forces two-sided.
- pad_toint, optional
The number of points to which the data segment is padded when performing the FFT. This can be different from NFFT, which specifies the number of data points used. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the n parameter in the call to fft(). The default is None, which sets pad_to equal to NFFT
- NFFTint, default: 256
The number of data points used in each block for the FFT. A power 2 is most efficient. This should NOT be used to get zero padding, or the scaling of the result will be incorrect; use pad_to for this instead.
- detrend{'none', 'mean', 'linear'} or callable, default 'none'
The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in MATLAB, where the detrend parameter is a vector, in Matplotlib is it a function. The
mlab
module definesdetrend_none
,detrend_mean
, anddetrend_linear
, but you can use a custom function as well. You can also use a string to choose one of the functions: 'none' callsdetrend_none
. 'mean' callsdetrend_mean
. 'linear' callsdetrend_linear
.- scale_by_freqbool, default: True
Whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MATLAB compatibility.
- noverlapint, default: 0 (no overlap)
The number of points of overlap between blocks.
- Fcint, default: 0
The center frequency of x, which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband.
Returns: - Cxy1-D array
The coherence vector.
- freqs1-D array
The frequencies for the elements in Cxy.
Other Parameters: - **kwargs
Keyword arguments control the
Line2D
properties:Property Description agg_filter
a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alpha
float or None animated
bool antialiased
or aabool clip_box
Bbox
clip_on
bool clip_path
Patch or (Path, Transform) or None color
or ccolor contains
unknown dash_capstyle
{'butt', 'round', 'projecting'} dash_joinstyle
{'miter', 'round', 'bevel'} dashes
sequence of floats (on/off ink in points) or (None, None) data
(2, N) array or two 1D arrays drawstyle
or ds{'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default' figure
Figure
fillstyle
{'full', 'left', 'right', 'bottom', 'top', 'none'} gid
str in_layout
bool label
object linestyle
or ls{'-', '--', '-.', ':', '', (offset, on-off-seq), ...} linewidth
or lwfloat marker
marker style string, Path
orMarkerStyle
markeredgecolor
or meccolor markeredgewidth
or mewfloat markerfacecolor
or mfccolor markerfacecoloralt
or mfcaltcolor markersize
or msfloat markevery
None or int or (int, int) or slice or List[int] or float or (float, float) or List[bool] path_effects
AbstractPathEffect
picker
unknown pickradius
float rasterized
bool or None sketch_params
(scale: float, length: float, randomness: float) snap
bool or None solid_capstyle
{'butt', 'round', 'projecting'} solid_joinstyle
{'miter', 'round', 'bevel'} transform
matplotlib.transforms.Transform
url
str visible
bool xdata
1D array ydata
1D array zorder
float
Notes
Note
In addition to the above described arguments, this function can take a data keyword argument. If such a data argument is given, the following arguments can also be string
s
, which is interpreted asdata[s]
(unless this raises an exception): x, y.Objects passed as data must support item access (
data[s]
) and membership test (s in data
).References
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986)